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Abstract

White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes,

have been considered the hematopoietic organ of the cephalopods. Its glandular appear-

ance and its lobular morphology suggest that different parts of the WB may perform different

functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this

study is to describe the transcriptomic profile of WB to better understand its functions, with

emphasis on the difference between sexes during reproductive events. Then, validation via

qPCR was performed using different tissues to find out tissue-specific transcripts. High dif-

ferentiation in signaling pathways was observed in the comparison of female and male tran-

scriptomic profiles. For instance, the expression of genes involved in the androgen receptor-

signaling pathway were detected only in males, whereas estrogen receptor showed higher

expression in females. Highly expressed genes in males enriched oxidation-reduction and

apoptotic processes, which are related to the immune response. On the other hand, expres-

sion of genes involved in replicative senescence and the response to cortisol were only

detected in females. Moreover, the transcripts with higher expression in females enriched a

wide variety of signaling pathways mediated by molecules like neuropeptides, integrins,

MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide tran-

scripts, showed higher expression in females’ WB and were not detected in other analyzed

tissues. These results suggest that the differentiation in signaling pathways in white bodies

of O. maya influences the physiological dimorphism between females and males during the

reproductive phase.
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Introduction

The white body (WB) was first described by Cuvier [1] as a “corps glanduleux” surrounding

the optic lobes and optic traits with the only function to protect these structures during muscle

contraction. Later the WB was considered as site for the formation of leucocytes [2,3]. Cazal

and Bogoraze [4] proposed a second function for the WB: “fonction nèphrocytaire”, and both

functions were supported by the work of Bolognari [5]. Then Harrison and Martin [6] demon-

strated an important role of WB in urine formation; however Young [7], retained that its func-

tion was still unclear.

In cephalopods, it is well known that haemocytes are originated within the WB, in fact, sev-

eral hematopoiesis genes were found to be expressed in the WB of squid Euprymna tasmanica
[8]. In addition, transcripts associated with immune-related signal transduction pathways

were found, as well as other genes of the immune response previously identified in E. scolopes
[9]. Nevertheless, its general similitude with the mammal lymphoid tissue, its lobular morphol-

ogy, and its glandular appearance suggest that different WB regions may perform different

functions [10,11]; but in octopuses, a detailed functional analysis of the WB is lacking. This

organ links the nervous and circulatory systems and may play a role in the cooperation

between neuroendocrine and immune responses to environmental stimuli [12]. However, the

understanding of how these two systems cooperate, remains unclear [12]. Such interaction

may be mediated via secretion/reception of hormones, neuropeptides or signaling peptides.

The neuroendocrine crosstalk among different lobes of the nervous system, which regulates

physiology and reproduction of O. vulgaris, is well documented [12–16]. However, if the WB

takes a place in this crosstalk is poorly understood. Herein, to better understand the WB func-

tions, this study was directed to describe its gene expression, with emphasis in sex-related and

reproductive-stage related differences via RNA-Seq. This technology has been successfully

implemented for gene discovery and for estimation of gene expression levels in different ceph-

alopod tissues [8,17–21]. In addition, different tissues were compared in terms of gene expres-

sion to identify sex-specific and tissue-specific transcripts.

Method

Ethics statement

In this study, octopuses were anesthetized with ethanol 3% in sea water at experimental tem-

peratures [22,23] to enable humane killing [24] in consideration of ethical protocols [25], and

the animals’ welfare during manipulations [26,27]. Our protocols were approved by the experi-

mental Animal Ethics Committee of the Faculty of Chemistry at Universidad Nacional Autón-

oma de México (Permit number: Oficio/FQ/CICUAL/099/15). We encouraged the effort to

minimize animals stress and the killing of the minimum necessary number of animals for this

study.

Acclimation and experimental design

Female and male octopuses with a body mass that ranged between 400–600 g were captured

off the coast of Sisal Yucatán, México, by artisanal fishing fleet and then transported to the

Experimental Cephalopod Production Unit at the Multidisciplinary Unit for Teaching and

Research (UMDI-UNAM), Sisal, Yucatan, Mexico. Octopuses were acclimated for 10 d with

1:1 sex ratio, in 6 m diameter outdoor ponds provided with aerated natural seawater

(26 ± 1˚C). The ponds were covered with black mesh reducing direct sunlight to 70% and con-

nected to seawater recirculation systems coupled to protein skimmers and 50 μm bag filters.

PVC 50 mm diameter open tubes were offered as refuges in proportion 2:1 per animal.
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Octopuses were fed individually twice a day with a paste made with squid and crab meat at

ratio of 8% of its body weight [28]. Food not ingested, and feces were removed daily. During

acclimation octopuses paired freely; then, a group of ten males were sampled before copulation

and another group of ten were sampled after copulation. On the other hand, twenty fertilized

females were individually reared in 80L tanks in a recirculating aquaculture water system.

Each tank was provided with a fiberglass box that serves as refuge for the female and for spawn

settling. System temperature was maintained at 24˚C, until all females spawned. These condi-

tions were selected because 24˚C is the preferred temperature of this species and has been rec-

ommended as the best condition for spawning [29,30]. Water was heated by using a 1200W

titanium immersion heater connected to a digital temperature sensor, both placed at system

reservoir; and was cooled by using air conditioning according to the temperature required.

White body sampling

Octopus sensibility was minimized before manipulation, by means of an anesthetic procedure

that consisted in maintaining animals in 3% alcohol-sea water solution for up to 4 minutes

[23]. White body samples were obtained from ten males before copulation (MPRE) and from

ten males after copulation (MPOS). In the case of females, ten WB samples were obtained

before spawning (FPRE) and another ten samples after spawning (FPOS). All WB samples

were taken from the region adjacent to the optic lobe. Additional samples from different tis-

sues (including hearts and gonads) were obtained from the same experimental individuals, for

further analyses. All tissue samples were preserved in RNAlater solution until RNA extraction.

RNA sequencing

Total RNA was extracted from 30 mg of WB tissue using the RNeasy extraction kit (Qiagen)

following manufacturer instructions. RNA was quantified with NanoDrop 2000 spectropho-

tometer (Thermo Scientific) and quality was assessed using the Bioanalyzer Instrument 2100

(Agilent Technologies). Samples that presented an RNA integrity number (RIN) equal or

higher than 7 were used for sequencing. Using equal amounts of RNA from the three individu-

als with higher RIN in each experimental condition, paired-end cDNA libraries were prepared

using the TruSeq DNA Sample Preparation Kit v2 (Illumina), following the manufacturers

protocol. Subsequently, cluster generation and DNA sequencing were performed in MiSeq

sequencing system (Illumina) to obtain reads of 250 bp long.

De novo transcriptome assembly

The quality of raw sequence data was assessed with FastQC v. 0.11.6 (Babraham Bioinformat-

ics). Low quality reads were discarded with Trimmomatic v0.35 software [31] keeping those

with Phred score above 28, for subsequent analysis. Reads from all libraries (reads accession

number: SRR8049182, SRR8049183, SRR8049184, SRR8049185) were de novo assembled

using Trinity v2.4.0 [32] using default parameters (assembly accession number: GHBT

00000000; BioProject: PRJNA496073).

Differential expression analysis

The transcriptome assembled with all female and male reads was used as reference to estimate

the abundance of the transcripts for each library: FPRE, FPOS, MPRE and MPOS. The reads

from each library were aligned back to the reference transcriptome by using Bowtie2 v2.3.2

[33], followed by quantification and normalization (fragments per Kilobase million, FPKM)

with RSEM v1.3.0 [34]. A matrix including the FPKM of all the libraries was analyzed to
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identify the differentially expressed (DE) transcripts (false discovery rate, FDR < 0.01, fold

change> 2) with edgeR package (Bioconductor) in R software [35] using a dispersion value of

0.1, which is suitable for non-replicate data [36]. The DE transcripts were arranged in clusters

according to their expression pattern and were represented with a heatmap. These analyses

were performed using the Perl and R scripts included in Trinity v2.4.0.

Functional annotation of transcripts

The reference transcriptome (assembled from the reads of both sexes) was analyzed with

BLASTx [37] to find homologs within UniProt Release 2017_12 database with an e-value < E-

05 filter. The Gene Ontology (GO) annotations were obtained based on the UniProt IDs using

Blast2GO v4.1 with an e-value filter of 1E-08 [38]. The GO annotations for each transcript

were analyzed to identify the best-represented biological processes detected in the reference

transcriptome, based on the number of sequences included in each GO category. On the other

hand, a Fisher exact test (FDR< 0.05) was implemented to identify the enriched biological

processes in each library, using the annotated DE transcripts as test-set and the reference tran-

scriptome as background in Blast2GO v4.1. In the same way, an additional enrichment of met-

abolic pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG) database [39] was

performed, using DAVID 6.8 [40] with the annotated DE transcripts as test-set and the assem-

bled reference transcriptome as background. From the enriched categories, transcripts were

selected for further analysis to confirm the annotation results. These transcripts were analyzed

with TransDecoder v5.5.0 [41] to identify their longest open reading frames (ORF), and to pre-

dict their coding sequences and encoded peptides. Then, BLASTp searches against the non-

redundant (nr) protein database were performed online (https://blast.ncbi.nlm.nih.gov/Blast.

cgi) for the predicted encoded peptides.

Phylogenetic analysis of relevant DE transcripts

A phylogenetic analysis was performed to corroborate the BLASTx results of DE transcripts

involved in relevant biological processes. A nucleotide sequence alignment was built, including

all the mRNA sequences from mollusks available in the Genbank nucleotide database, corre-

sponding to the putative gene analyzed. Nucleotide and codon alignments were carried out

with the ClustalW 2.0 algorithm [42]; then the alignments were analyzed to find the nucleotide

substitution model that best described the data, using the Maximum Likelihood method (ML).

The model with lowest Bayesian Information Criterion score was considered the best [43].

The phylogenetic relationship among the sequences was inferred by using the ML method

based on the General Time Reversible model [43]. Initial tree for the heuristic search was

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pair-

wise distances estimated using the Maximum Composite Likelihood approach, and then

selecting the topology with superior log likelihood value. The bootstrap consensus tree inferred

from 200 replicates was taken to represent the evolutionary history of the sequences analyzed

[44]. Evolutionary analyses were conducted in MEGA7 [45].

Validation of DE transcripts via qPCR

A quantitative real-time PCR analysis was performed to validate the sex-related and tissue spe-

cific expression of transcripts, using additional tissues (systemic heart and testis). RNA sam-

ples were treated with RQ1 RNase-free DNase (Promega) before cDNA synthesis. The cDNA

synthesis was carried out with the Improm II Reverse Transcription System (Promega) follow-

ing manufacturer’s instructions starting with 1μg of RNA from each sample. Primers for qPCR

were designed with Primer3 [46] based on the selected transcript sequences (Table 1). To
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calculate the primer amplification efficiency, a standard curve was built including five stepwise

dilutions of the cDNA samples with a constant dilution factor of 1:5, using nuclease-free

water. The amplification reaction included 7μL of B-R SYBR Green Super Mix (Quanta Biosci-

ences) and 3 μL of each cDNA dilution. Cq values were obtained in a C1000 Touch Thermal

Cycler including the CFX96 Real Time System (Bio-Rad) with an amplification program con-

sisting in: 2 min at 95˚C, 35 cycles of 30s at 95˚C, 30s at 57˚C, 30s at 72˚C and plate read, fol-

lowed by 5 min at 72˚C, 10s at 95˚C, 30s at 65˚C, 60 cycles of 5s at 65˚C + 0.5˚C/cycle and

plate read. The amplification efficiency of the primers (E) was calculated as E = [10(-1/k)-1],

with k representing the slope of the standard curve [47]. For relative expression analysis, all

reference and target transcripts were amplified by qPCR reactions within 96-well plastic plates

(including positive and non-template controls) using the same instrument, reagents and

amplification program as performed for amplification efficiency calculation. Nine biological

replicates per sex and tissue were analyzed individually and by triplicate. The relative expres-

sion of target transcripts in each group, were estimated using the ΔΔ Cq method in Qbase+ 3.0

software [48] using as reference the heterogeneous nuclear ribonucleoprotein D like

(HNRNPD) and the V-type proton ATPase subunit D (VATD) putative genes. Reference

genes were validated previously using geNorm [49] and NormFinder [50]. For statistical analy-

sis of relative gene expression values from RT-qPCR, one-way ANOVA and Tukey’s multiple

comparisons test were performed (P < 0.05). Moreover, Kruskal Wallis and Dunn’s post hoc

tests (P< 0.05) were used when assumptions of normality (Shapiro-Wilk) were not satisfied.

To test if the relative expression values obtained by RNA-Seq and qPCR were consistent, a

Spearman correlation was performed (P< 0.05). Statistical analyses were performed using Sta-

tistica7 software [51].

Results

Transcriptome assembly

For the reference transcriptome 75,265 unigenes and 90,435 isoforms were reconstructed,

showing an average contig length of 622 bases, an N50 of 875 bases and a total of 56,280,138

bases assembled.

Table 1. Target and reference genes, primers sequences and melting temperatures for qPCR analysis.

Putative encoded protein Tm˚C Forward Reverse

Targets

C-Jun-amino-terminal kinase-interacting protein 4 (Spag9) 57–60 GAGCTTCAGATGGCCAATGG TTGCAGCCACACCATACATG

Corticotropin-releasing factor receptor 2 57–60 CACCAAAGCACCCTTGACAG CCATTGTGTGCCTGTATTTCTG

Estradiol 17-beta-dehydrogenase 8 57–60 CAGTTGGGAAAGCATGGTGG CAGTGTCTGCCAGGTGTTTG

Estrogen receptor 57–60 AGGTAGCCAAAGGAAGGAGAG AAACGCTGACTCTTTGCTGG

Putative neuropeptide (FMRF-amide like) 57–60 TTATTTCCATCAAAGCTG AGATCTGATCATGGCAGT

Piwi-like protein 1 57–60 GCGGTCTGAAAGGTTGTACG GACCATTACCACGACTCTGC

ATP-dependent RNA helicase DDX4

(Vasa homolog)

57–60 GCCATTAGATCACGACCAGC GAAGCCCAATTCCAGCAAAAG

Zonadhesin 57–60 CCACATTATTCGGGCTTCAGG GTCAACACCGGCCTTTGTAC

Reference

V-type proton ATPase subunit D 57 TGAAATACGGTGCAAGAGGGG ACTGATTCCCAAGAGCCATCC

Heterogeneous nuclear ribonucleoprotein

D-like

60 GTTCTCGTGGATTTGCTCGC TCCAGAGGTTTTGGTTTTGTCC

https://doi.org/10.1371/journal.pone.0216982.t001
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Differential expression analysis

A total of 3,522 WB transcripts showed significant differential expression between females and

males (FDR< 0.01). From these, 2,192 showed higher expression in females and 1,330 in

males. By contrast, differential gene expression was much lower comparing before and after

the reproductive events. Between pre and post-spawning females, only 60 transcripts showed

significant differential expression; and in males, 140 transcripts showed significant differences

between pre and post copula condition (Fig 1).

Functional annotation and enrichment analysis

Using BLASTx searches, 17,656 transcripts of the reference transcriptome showed significant

hits against the UniProt database, corresponding to 10 339 putative peptides. Then, after sepa-

rating transcripts by sex, 13,399 were annotated in females, corresponding to 9,175 peptides;

on the other hand, 13,265 male transcripts corresponding to 9,429 peptides showed significant

hits in this database. From these, 5,926 hits were shared, 3,249 were exclusive for females and

3,503 for males. For the reference transcriptome the best represented gene ontologies in terms

of biological processes (BP) are shown in Fig 2 where the response to stress, cell communica-

tion, signaling, and developmental processes appeared among the most specific categories.

Fig 1. Heatmap representing the abundance of differentially expressed genes (rows, FDR< 0.01, fold change> 2)

in each cDNA library (columns). Dendogram shows that female and male O. maya white body samples were

clustered in different groups. Libraries: MPRE = male pre-copula, MPOS = male post-copula, FPRE = female pre-

spawning, FPOS = female post-spawning. Values represent fold change in log2.

https://doi.org/10.1371/journal.pone.0216982.g001
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Moreover, in the assembled transcriptome we found at least 74 unigenes from the immune

system category (Table 2), as well as 25 additional unigenes coding for different proteins con-

sidered as hematopoietic fingerprints [52] (Table 3).

According to the enrichment analysis based on KEGG database, there was high differentia-

tion in signaling pathways between female and male white bodies (Table 4). In the females

there was significant enrichment for a wide variety of signaling systems such as Toll-like recep-

tor, PI3K-Atk, TNF, MAPK, mTOR, Rap1, oxytocin, JAK-STAT, VEGF, Ras and insulin

among the most important (S1–S13 Figs). By contrast, in males there was enrichment of path-

ways involving translation initiation factors (eIFs) and apoptotic pathways related to an incre-

ment in reactive oxygen species (ROS) (S14–S17 Figs).

On the other hand, there were also significant GO enrichments based on the transcripts

with higher expression in each sex (Table 5). In the females, unigenes involved in the neuro-

peptide signaling, integrin-mediated signaling, and signaling regulation pathways were highly

expressed. Among the transcripts included in the category of neuropeptide signaling, we

found five sequences putatively coding for FMRF-amide neuropeptide. These sequences were

further analyzed to obtain the predicted coding sequence and the encoded peptide. The longest

predicted peptide consisted in 143 amino acids with YIPF repeats each 12 amino acids, but not

FMRF repeats were detected. This peptide obtained significant BLASTp hits (1E-10) with the

Enterin neuropeptide of the clam Mizuhopecten yessoensis (NCBI accession number

OWF47724.1). The aligned amino acid sequences presented Y+PF matches each 12 positions

with no gaps, and mismatches in the non-repetitive region. This confirms the similarity of

these transcripts with other mollusk neuropeptides.

In addition, GO terms like stem cell division, response to starvation, response to cortisol

and replicative senescence were enriched in females. By contrast, the males showed significant

enrichment for GOs like anatomical structure development, microtubule-based process, cil-

ium morphogenesis, protein modification process and regulation of apoptosis among the best-

represented categories. The unigenes that best represented the enriched GO categories are

shown in Table 6.

Fig 2. Top GO terms (biological process, level 3) from the reference transcriptome of O. maya white body. The

categories with more transcripts assigned are shown.

https://doi.org/10.1371/journal.pone.0216982.g002
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Table 2. Transcripts and their encoded putative proteins from O. maya white body, classified in the immune process GO category.

Transcript ID Putative encoded protein E-value

TRINITY_DN3041_c0_g1_i1 Ankyrin repeat and KH domain-containing protein mask 0.00E+00

TRINITY_DN58699_c0_g1_i3 AP-1 complex subunit gamma-1 0.00E+00

TRINITY_DN7437_c0_g1_i1 ATP-binding cassette sub-family F member 3 0.00E+00

TRINITY_DN12624_c0_g1_i1 Canalicular multispecific organic anion transporter 1 0.00E+00

TRINITY_DN13311_c0_g1_i4 Interleukin enhancer-binding factor 2 homolog 0.00E+00

TRINITY_DN25104_c0_g1_i2 Polypeptide N-acetylgalactosaminyltransferase 2 0.00E+00

TRINITY_DN14001_c0_g1_i1 Protein transport protein Sec23A 0.00E+00

TRINITY_DN12936_c0_g2_i1 Protein transport protein Sec24B 0.00E+00

TRINITY_DN57852_c0_g1_i1 Protein transport protein Sec24C 0.00E+00

TRINITY_DN32521_c0_g1_i1 Protein transport protein Sec31A 0.00E+00

TRINITY_DN33465_c0_g1_i1 Ribonuclease 3 0.00E+00

TRINITY_DN16095_c0_g1_i1 Stress-activated protein kinase JNK 0.00E+00

TRINITY_DN58150_c0_g1_i1 Protein pellino 8.16E-172

TRINITY_DN50778_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC5 5.39E-171

TRINITY_DN33525_c0_g1_i1 Cytoplasmic dynein 1 heavy chain 1 9.34E-165

TRINITY_DN2016_c0_g1_i1 AP-1 complex subunit mu-1 2.15E-159

TRINITY_DN25996_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC3 2.69E-149

TRINITY_DN6228_c0_g1_i1 Maspardin 1.44E-146

TRINITY_DN3533_c0_g1_i1 Ras-related protein Rab-14 3.08E-145

TRINITY_DN33699_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC2 1.66E-142

TRINITY_DN1805_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC6 5.03E-137

TRINITY_DN26718_c0_g1_i1 ATP-binding cassette sub-family C member 9 1.67E-134

TRINITY_DN25730_c0_g1_i1 Exosome complex component RRP41 1.66E-123

TRINITY_DN59780_c0_g1_i1 Oxysterol-binding protein-related protein 1 4.42E-122

TRINITY_DN13124_c0_g1_i1 Dynactin subunit 4 1.28E-114

TRINITY_DN17640_c0_g1_i1 85/88 kDa calcium-independent phospholipase A2 1.38E-99

TRINITY_DN1706_c0_g1_i1 Serine/threonine-protein kinase TBK1 4.09E-93

TRINITY_DN14949_c0_g1_i6 Ras-related protein Rab-35 7.03E-91

TRINITY_DN24144_c0_g1_i1 AP-1 complex subunit sigma-2 4.02E-90

TRINITY_DN27946_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC8 9.30E-88

TRINITY_DN12864_c0_g1_i1 Kinesin-like protein KIF22 9.73E-83

TRINITY_DN43844_c0_g1_i1 Ras-related protein Rab-32 5.84E-76

TRINITY_DN12915_c0_g1_i2 Cytosolic carboxypeptidase-like protein 5 8.70E-72

TRINITY_DN12601_c0_g2_i1 Dynactin subunit 6 1.54E-68

TRINITY_DN1393_c0_g1_i1 Exosome complex component RRP46 3.18E-63

TRINITY_DN15204_c0_g1_i2 Histone H2B 3.91E-63

TRINITY_DN30815_c0_g1_i1 Ras-related protein Rab-27A 1.09E-61

TRINITY_DN15285_c2_g1_i6 Death-associated inhibitor of apoptosis 2 2.65E-61

TRINITY_DN9422_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC10 1.49E-58

TRINITY_DN31254_c0_g1_i1 Germinal-center associated nuclear protein 1.64E-54

TRINITY_DN6747_c0_g1_i2 Flavin-containing monooxygenase FMO GS-OX-like 2 7.91E-51

TRINITY_DN43328_c0_g1_i1 Ras-related protein Rab-34 3.11E-48

TRINITY_DN20201_c0_g1_i1 Protein kinase C-like 1 4.07E-40

TRINITY_DN2448_c0_g1_i1 Repressor of yield of DENV protein homolog 2.04E-39

TRINITY_DN16609_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC4 2.34E-39

TRINITY_DN24836_c0_g1_i1 Gamma-interferon-inducible lysosomal thiol reductase 9.97E-39

TRINITY_DN10639_c0_g1_i1 B-cell lymphoma 3 protein 1.25E-38

(Continued)
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Phylogenetic analysis of relevant DE transcripts

Phylogenetic analysis for the putative FMRF-amide sequences was performed, including five

assembled transcripts. The analysis involved 90 nucleotide sequences and a total of 255 posi-

tions in the final dataset. Different topologies were obtained for the codon-based analysis and

the nucleotide-based analysis. In the codon-based analysis, the putative FMRF-amide

sequences were clustered with Aplysia californica PRQFVamide precursor protein mRNA

(AY231295.1). However, in the nucleotide-based analysis they were clustered with Lymnaea
stagnalis pedal peptide preprohormone mRNA (AY297820.1) and Loligo pealei FMRF-amide

precursor, mRNA (FJ205479.1). Subtrees for both analyses, including the assembled tran-

scripts and their evolutionarily closer sequences are shown in Fig 3.

Quantitative qPCR analysis

We selected transcripts based on three criteria a) their highly significant differential expression

in RNA-seq analysis, like the transcript putatively coding for FMRF-amide neuropeptide, b)

their relevance in signaling/hormonal process [53] like estradiol 17-beta-dehydrogenase 8

(HSD17B8), estrogen receptor (ESR1), corticotropin-releasing factor receptor 2 (CRHR2), c)

Table 2. (Continued)

Transcript ID Putative encoded protein E-value

TRINITY_DN22385_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC1 4.74E-35

TRINITY_DN5407_c0_g1_i1 NF-kappa-B inhibitor cactus 1.36E-34

TRINITY_DN12481_c0_g1_i2 Probable ATP-dependent RNA helicase DHX58 3.54E-34

TRINITY_DN62663_c0_g1_i1 Acyl-CoA-binding protein 4.77E-34

TRINITY_DN18508_c0_g1_i1 S-adenosylmethionine decarboxylase proenzyme 7.69E-32

TRINITY_DN41170_c0_g1_i1 Ecdysone-induced protein 75B, isoform B 2.22E-31

TRINITY_DN51040_c0_g1_i1 Bactericidal permeability-increasing protein 4.77E-31

TRINITY_DN1251_c0_g1_i1 Phosphonopyruvate decarboxylase 1.36E-28

TRINITY_DN14304_c0_g1_i2 Coactosin-like protein 4.35E-28

TRINITY_DN6200_c0_g1_i1 Dicer-like protein 2–1 [Includes: Endoribonuclease dcl2-1 1.26E-26

TRINITY_DN1240_c0_g1_i1 DNA-directed RNA polymerase III subunit RPC9 8.77E-26

TRINITY_DN14178_c0_g1_i1 Serine incorporator 3 9.71E-26

TRINITY_DN65555_c0_g1_i1 Copper-transporting ATPase 1 2.09E-25

TRINITY_DN5713_c0_g2_i1 Somatomedin-B and thrombospondin type-1 domain-containing protein 8.08E-25

TRINITY_DN45827_c0_g1_i1 Zinc finger protein 175 2.29E-22

TRINITY_DN10580_c0_g1_i2 E3 ubiquitin-protein ligase TRIM56 1.24E-18

TRINITY_DN51724_c0_g1_i1 Protein toll 2.59E-16

TRINITY_DN44678_c0_g1_i1 Cathepsin S 1.89E-15

TRINITY_DN18512_c0_g1_i1 Ras-related protein Rab-27A 3.72E-15

TRINITY_DN54582_c0_g1_i1 Indoleamine 2,3-dioxygenase 2 9.08E-13

TRINITY_DN24334_c0_g1_i1 C-type lectin domain family 4 member E 9.92E-13

TRINITY_DN12672_c0_g2_i1 Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D 7.18E-11

TRINITY_DN53340_c0_g1_i2 Putative fungistatic metabolite 1.17E-09

TRINITY_DN14447_c0_g1_i3 B-cell lymphoma 3 protein homolog 7.47E-09

TRINITY_DN50497_c0_g1_i1 Putative phosphatidate phosphatase 7.47E-08

TRINITY_DN11786_c0_g1_i2 Interleukin-1 receptor accessory protein 6.39E-07

TRINITY_DN54047_c0_g1_i1 Venom phosphodiesterase 1 3.94E-06

E-value for the match between query and subject sequences is shown for each transcript.

https://doi.org/10.1371/journal.pone.0216982.t002
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unexpected transcripts that may represent novel functions of the WB like ATP-dependent

RNA helicase DDX4 (VASA homolog), Piwi-like protein 1 (PIWIL1) related to germ cell

development [54–58], as well as zonadhesin (ZAN) and C-Jun-amino-terminal kinase-inter-

acting protein 4 (SPAG9) transcripts involved in species-specific fertilization [59,60]. All

selected transcripts were correctly amplified in real-time qPCR reactions. The expression val-

ues of CRHR2, HSD17B and VASA genes failed the Shapiro-Wilk normality test and were ana-

lyzed with non-parametric statistics. All transcripts showed significant differential expression

among the analyzed groups, considering their parametric or non-parametric distribution

(P< 0.01). Their estimated relative expression was represented in histograms with mean val-

ues and 95% confidence intervals in each sex-tissue group. Tissue-specific and sex-specific

gene expression were detected: the putative FMRF-amide like neuropeptide was detected only

in the WB, with higher expression in females than in males (Fig 4); whereas the corticotropin-

releasing factor receptor 2, showed higher expression in females’ WB and heart (Fig 5). On the

other hand, despite the expression of the estrogen receptor in the WB, the highest expression

was observed in the testis tissue; nevertheless, its expression was significantly higher in females’

WB compared to males’ WB (Fig 6). Similarly, HSD17B8 showed relative low expression in

WB and the highest expression in testis (Fig 7). In addition, the transcripts related to germ cell

development and spermatogenesis detected in the WB like the ATP-dependent RNA helicase

DDX4 (VASA) and Piwi-like protein 1 (PIWIL1) were not tissue-specific and showed higher

Table 3. Hematopoietic fingerprint proteins [52], detected in the reference transcriptome of O. maya white body.

Transcript ID Putative encoded protein E-value

TRINITY_DN13855_c0_g1_i1 Cis-aconitate decarboxylase (CAD) (EC 4.1.1.6) 1.14E-116

TRINITY_DN18826_c0_g1_i1 E3 ubiquitin-protein ligase FANCL (EC 2.3.2.27) 1.06E-99

TRINITY_DN4253_c0_g1_i1 Zinc finger protein ZFAT 2.43E-81

TRINITY_DN41973_c0_g1_i1 WD repeat-containing protein 78 1.29E-71

TRINITY_DN12997_c0_g1_i2 Serine/arginine-rich splicing factor 4 1.51E-67

TRINITY_DN32443_c0_g1_i1 Armadillo repeat-containing protein 6 1.63E-66

TRINITY_DN5066_c0_g1_i1 Mediator of RNA polymerase II transcription subunit 8 6.43E-63

TRINITY_DN58912_c0_g1_i1 MDS1 and EVI1 complex locus protein EVI1 3.92E-61

TRINITY_DN1806_c0_g1_i1 Protein lunapark 4.69E-57

TRINITY_DN17370_c0_g1_i1 Cytosolic Fe-S cluster assembly factor NARFL 9.31E-39

TRINITY_DN32728_c0_g1_i1 T-lymphoma invasion and metastasis-inducing protein 2 (TIAM-2) 2.77E-33

TRINITY_DN29000_c0_g1_i1 WD repeat-containing protein 38 3.15E-27

TRINITY_DN22647_c0_g1_i1 Prostaglandin G/H synthase 2 (EC 1.14.99.1) 1.63E-25

TRINITY_DN15558_c0_g1_i22 Toll-like receptor 13 6.99E-24

TRINITY_DN19432_c0_g1_i1 Serine-protein kinase ATM 8.17E-24

TRINITY_DN15551_c2_g3_i4 Protein PRRC2C 6.48E-21

TRINITY_DN31382_c0_g1_i1 Zinc finger protein 784 7.85E-17

TRINITY_DN15186_c1_g1_i2 Sorting nexin-8 1.40E-15

TRINITY_DN38869_c0_g1_i1 Collagen alpha-1 (XXIV) chain 2.83E-11

TRINITY_DN26628_c0_g1_i1 Angiopoietin-1 receptor (EC 2.7.10.1) 1.32E-09

TRINITY_DN57286_c0_g1_i1 B-cell lymphoma/leukemia 11A (BCL-11A) 1.69E-09

TRINITY_DN14986_c0_g1_i4 Zinc finger and BTB domain-containing protein 24 3.17E-09

TRINITY_DN40041_c0_g1_i1 WD repeat-containing protein 7 1.82E-08

TRINITY_DN11910_c0_g1_i1 Neural cell adhesion molecule 1-A 3.07E-07

TRINITY_DN54522_c0_g1_i1 Zinc finger homeobox protein 4 2.05E-06

E-value for the match between query and subject sequences is shown for each transcript.

https://doi.org/10.1371/journal.pone.0216982.t003
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expression in testis (Figs 8 and 9). However, ZAN that is involved in species-specific fertiliza-

tion, was highly expressed in WB, showing similar expression levels to those in testis (Fig 10).

Finally, SPAG9, which is also involved in fertilization showed the highest expression in the

females’ WB (Fig 11). The Spearman correlation for the expression values obtained by RNA--

Seq and qPCR was significant (P< 0.05), suggesting that both methods reported same tenden-

cies in the expression levels across all the analyzed genes and samples.

Table 4. KEGG pathways enriched by the differentially expressed transcripts between female and male WB of O.

maya.

Up in females Term P value

Toll-like receptor signaling pathway 2.05E-04

Hepatitis B 5.21E-04

Influenza A 2.36E-03

Focal adhesion 4.00E-03

PI3K-Akt signaling pathway 4.00E-03

Epstein-Barr virus infection 4.65E-03

Hepatitis C 4.89E-03

TNF signaling pathway 9.75E-03

MAPK signaling pathway 1.07E-02

Chagas disease (American trypanosomiasis) 1.33E-02

Osteoclast differentiation 1.33E-02

mTOR signaling pathway 1.49E-02

Rap1 signaling pathway 1.69E-02

Bacterial invasion of epithelial cells 2.17E-02

Shigellosis 2.17E-02

Thyroid hormone signaling pathway 2.17E-02

Phagosome 2.78E-02

Acute myeloid leukemia 3.24E-02

Jak-STAT signaling pathway 3.24E-02

Oxytocin signaling pathway 3.24E-02

Regulation of actin cytoskeleton 3.24E-02

ErbB signaling pathway 3.61E-02

Measles 3.61E-02

Choline metabolism in cancer 4.53E-02

Fc epsilon RI signaling pathway 4.53E-02

VEGF signaling pathway 4.53E-02

Insulin resistance 4.57E-02

Ras signaling pathway 4.57E-02

Up in males

Parkinson’s disease 1.65E-04

Oxidative phosphorylation 7.05E-04

Alzheimer’s disease 9.40E-04

Huntington’s disease 5.57E-03

RNA transport 2.64E-02

Non-alcoholic fatty liver disease (NAFLD) 3.57E-02

Pyrimidine metabolism 4.74E-02

P value of the enrichment is shown.

https://doi.org/10.1371/journal.pone.0216982.t004
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Table 5. Top-20 enriched GO (fisher exact test, FDR< 0.05) in female and male O. maya white body.

Females FDR

neuropeptide signaling pathway 3.29E-09

protein localization to plasma membrane 2.09E-07

positive regulation of cell migration 4.42E-07

positive regulation of transcription by RNA polymerase II 6.37E-07

protein autophosphorylation 1.11E-06

negative regulation of cell population proliferation 2.76E-06

negative regulation of multicellular organismal process 4.38E-06

cerebral cortex neuron differentiation 2.72E-05

histone H4 acetylation 4.48E-05

protein ubiquitination 5.18E-05

positive regulation of organelle organization 5.74E-05

establishment of endothelial barrier 7.18E-05

embryonic morphogenesis 7.82E-05

primary miRNA processing 1.31E-04

COPII vesicle coating 1.31E-04

regulation of phosphoprotein phosphatase activity 1.31E-04

mRNA splice site selection 1.71E-04

integrin-mediated signaling pathway 1.75E-04

keratinocyte differentiation 2.27E-04

histone H3-K27 trimethylation 2.37E-04

Males

translational initiation 3.73E-08

rRNA processing 9.92E-07

nuclear-transcribed mRNA catabolic process,

nonsense-mediated decay

1.45E-05

regulation of translation 1.77E-04

ribonucleoprotein complex assembly 1.94E-04

cytoplasmic translation 2.13E-04

negative regulation of multi-organism process 2.92E-03

proteolysis 4.81E-03

regulation of mRNA splicing, via spliceosome 5.49E-03

dUMP biosynthetic process 5.59E-03

positive regulation of humoral immune response 5.59E-03

proteasome assembly 5.59E-03

ribosomal large subunit biogenesis 5.59E-03

alpha-amino acid biosynthetic process 8.99E-03

regulation of apoptotic process 9.00E-03

coenzyme biosynthetic process 1.45E-02

multicellular organismal process 1.64E-02

viral transcription 1.64E-02

regulation of defense response 2.03E-02

cellular detoxification 2.27E-02

The test-set consisted in the transcripts with significant differential expression. The transcripts from the assembled

reference transcriptome were used as reference-set.

https://doi.org/10.1371/journal.pone.0216982.t005
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Discussion

One of the most relevant findings in this study was the different transcription pattern between

male and female white bodies of O. maya, during the reproductive phase. The unigenes

involved in this difference, fall mainly in the category of signaling pathways, and showed

higher expression in females. Numerous signaling cascades were highly active and occurring

simultaneously in the females. The enriched KEGG pathways suggest that bacterial and viral

infections were taking place in females (Table 4), triggering multiple signaling systems.

At the same time, the neuropeptide signaling pathway was also enriched in females by the

high expression of at least 5 different transcripts coding for a putative FMRF-amide like neuro-

peptide. FMRF-amide related peptides (FaRPs) constitute an evolutionary conserved and

diverse group of neuropeptides in the central nervous system (CNS) of many metazoans [61].

Table 6. Representative genes for the enriched GO (biological process, BP) in female (F) and male (M) white bodies.

Transcript ID Putative encoded protein BP Expression E-value

TRINITY_DN12966_c0_g2_i1 CAD protein RC FE 0.00E+00

TRINITY_DN7789_c0_g1_i1 Slit homolog 2 protein RC FE 2.20E-11

TRINITY_DN41857_c0_g1_i1 Slit homolog 3 protein RC FE 1.16E-21

TRINITY_DN58413_c0_g1_i1 Neprilysin Sen FE 9.67E-26

TRINITY_DN19432_c0_g1_i1 Serine-protein kinase ATM Sen FE 8.17E-24

TRINITY_DN22293_c0_g1_i1 Serine/threonine-protein kinase Chk2 Sen FE 9.77E-27

TRINITY_DN10693_c0_g1_i1 5’-AMP-activated protein kinase catalytic subunit alpha-2 RS FU 0.00E+00

TRINITY_DN16292_c0_g1_i1 Death-associated protein 1 (DAP-1) RS FU 2.85E-14

TRINITY_DN7555_c0_g1_i1 Myotubularin-related protein 3 RS FU 0.00E+00

TRINITY_DN2816_c0_g1_i1 Cullin-3 SCD FU 0.00E+00

TRINITY_DN12835_c0_g1_i1 Dedicator of cytokinesis protein 7 SCD FU 0.00E+00

TRINITY_DN14659_c0_g1_i4 mRNA decay activator protein ZFP36L2-A SCD FU 1.03E-28

TRINITY_DN15394_c0_g1_i7 Contactin-1 Sig FU 7.86E-11

TRINITY_DN15592_c26_g1_i1 E3 ubiquitin-protein ligase MIB1 Sig FU 0.00E+00

TRINITY_DN12598_c0_g1_i6 Putative neuropeptide (FMRF-amide like) Sig FU 2.70E-10

TRINITY_DN15483_c5_g1_i4 Galanin receptor type 2 Sig FU 2.39E-11

TRINITY_DN6658_c0_g1_i1 Integrin alpha-4 Sig FU 3.44E-48

TRINITY_DN13419_c1_g1_i3 Rap guanine nucleotide exchange factor 2 Sig FU 6.55E-147

TRINITY_DN36930_c0_g1_i1 Bardet-Biedl syndrome 2 protein AA ME 2.76E-65

TRINITY_DN27334_c0_g1_i1 Sperm-associated antigen 16 protein AA ME 8.87E-69

TRINITY_DN45819_c0_g1_i1 Bardet-Biedl syndrome 4 protein CM ME 1.55E-84

TRINITY_DN44314_c0_g1_i1 Cilia- and flagella-associated protein 46 CM ME 6.63E-15

TRINITY_DN52614_c0_g1_i1 Dynein heavy chain 1, axonemal CM ME 0.00E+00

TRINITY_DN5218_c0_g1_i1 Tektin-2 CM ME 5.31E-121

TRINITY_DN41434_c0_g1_i1 Tektin-3 CM ME 1.59E-130

TRINITY_DN57504_c0_g1_i1 Geranylgeranyl transferase type-2 subunit beta AR MU 0.00E+00

TRINITY_DN29802_c0_g1_i1 Protein disulfide-isomerase A3 AR MU 5.10E-50

TRINITY_DN4574_c0_g1_i1 Protein DJ-1 AR MU 4.37E-73

TRINITY_DN15563_c0_g1_i1 TNF receptor-associated factor 2 AR MU 2.18E-80

TRINITY_DN15548_c1_g1_i1 Tubulin alpha chain MBP MU 0.00E+00

TRINITY_DN15548_c1_g1_i10 Tubulin alpha-2/alpha-4 chain MBP MU 1.16E-174

TRINITY_DN57742_c0_g1_i1 Tubulin beta chain (Beta-tubulin) MBP MU 0.00E+00

E = exclusive, U = upregulated. Processes: response to cortisol (RC), replicative senescence (Sen), response to starvation (RS), stem cell division (SCD), signaling (Sig),

axoneme assembly (AA), cilium morphogenesis (CM), apoptosis regulation (AR), microtubule-based process (MBP).

https://doi.org/10.1371/journal.pone.0216982.t006
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Among the functions of FMRF-amide and FaRPs in mollusks are the following: the modula-

tion of sensory organs, reproduction, motility, osmoregulation, feeding and neurogenesis

[62,63]. In O. vulgaris, Di Cosmo and Di Cristo [64], and Di Cristo et al. [65], demonstrated

the presence of FMRF-amide both in the CNS and peripheral nervous system (PNS). In the

CNS this neuropeptide is involved in the inhibition of the secretory activity of the optic gland,

which in turn controls the gonad maturation [64]. FMRF-amide has been detected in several

lobes such as optic, subpedunculate and olfactory lobes of O. vulgaris CNS [66]. Significant

hits with this neuropeptide using the UniProt database were obtained in this study. However,

when the transcripts sequences were phylogenetically analyzed including all reported mollus-

can neuropeptides within the NCBI nucleotide database, they were clustered in different ways,

depending on the sequence alignment method. In the codon-based analysis the putative neu-

ropeptide transcripts were clustered with Aplysia californica PRQFVamide precursor protein

mRNA, which is involved in the regulation of the feeding system [67]. By contrast, in the

nucleotide-based analysis, the same transcripts were clustered with Lymnaea stagnalis pedal

peptide preprohormone mRNA, which was highly expressed during parasitic infections in the

great pond snail [68]; this branch also included the Loligo pealei FMRF-amide precursor,

mRNA (FJ205479.1). Despite certain similarity at the transcript level with the FMRF-amide

sequence, our query sequences do not contain FMRF repeats, instead they present YIPF

repeats each 12 aa according to the longest ORF predicted. This 12-aa distance between repeats

is also observed in the Enterin neuropeptide of the clam M. yessoensis, which may play a role

in non-feeding behaviors [69]. This suggests that these tissue-specific transcripts with higher

expression in females, show a neuropeptide-like structure, especially due to the constant and

equidistant YIPF repeats. This is the first report of putative neuropeptide-like transcripts

detected in the octopus’ WB. In this regard, further analyses are needed to clarify the nature

and functions of these putative neuropeptide transcripts, to assign it a possible role in the

anorexic behavior observed in fertilized females. Furthermore, the response to starvation was

another gene ontology enriched in females. This response may be related to the egg protecting

Fig 3. Phylogenetic relationship of the putative neuropeptide-coding transcripts from the O. maya white body transcriptome. The percentage of replicate

trees in which the associated sequences clustered together in the bootstrap test (200 replicates) are shown next to the branches (values above 40% are shown).

The analysis involved 90 nucleotide sequences and a total of 255 positions in the final dataset. The subtree including the closer sequences to the putative

transcripts are shown. Above: Nucleotide-based analysis. Below: Codon-based analysis.

https://doi.org/10.1371/journal.pone.0216982.g003
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behavior during pre and post spawning phases [70,71]. As other incirrate octopods, O. maya
females decrease and stop feeding during incubation of the eggs and focus exclusively on their

care until the hatching of the juveniles [70]. Maternal care generally includes the protection of

the egg mass from potential predators, ventilation by flushing water through the eggs, cleaning

the surface of the eggs, and removing dead embryos [72]. These results suggest that WB may

contribute to the regulation of this anorexic behavior in adult O. maya females.

Similarly, the response to cortisol was another enriched GO in females, which may be

linked to their anorexic behavior. Food deprivation has been correlated with high levels of cor-

tisol in fishes [73–75]. A similar glucocorticoid analogous to cortisol, the corticosterone has

been detected in Enteroctopus dofleini feces after stressful events [76]; so, it is possible that this

molecule is released in response to stress conditions [12] also in O. maya with higher expres-

sion in females due to its anorexic behavior before spawning. The presence in the WB of the

gene encoding for corticosteroid 11-beta-dehydrogenase isozyme 2 (HSD11B2), which

Fig 4. Relative expression levels of the putative neuropeptide transcript TRINITY_DN12598_c0_g1_i6 analyzed

via qPCR. Values represent the fold change (log10) of each target vs the reference genes. Reference genes: HNRNPD

and VATD. Samples: FWB = female white body, FH = female heart, MWB = male white body, MH = male heart,

MT = male testis. The 95% confidence interval of each group is shown and the significant differences among groups

are represented with different letters.

https://doi.org/10.1371/journal.pone.0216982.g004
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participates in the corticosterone inactivation [77,78], together with the corticotropin-releas-

ing factor receptor 2 (CRHR2), which expression was higher in females, supports this hypothe-

sis. These results suggest that the WB plays a role in the glucocorticoid metabolism, and in the

response to glucocorticoids. In this regard, the WB can be an important target of glucocorti-

coids, considering that these molecules can restrain the immune and inflammatory responses

[79–83], which are mediated by the WB at least partially [8,84]. But why the immune response

should be down-regulated? In fertilized females this regulation could be required to permit the

maintenance of foreign cells, specifically the spermatozoa, which are stored in the females’ ovi-

ductal gland up to four months [70,85–87]. The immune regulation leaded by glucocorticoids

with possible action in the WB, may contribute to keep spermatozoa safe from the females’

immune system. This down-regulation over females’ immune response may be linked to the

high expression of signaling genes involved in bacterial and viral infections, as illustrated by

the enriched KEEG pathways. On the other hand, despite some evidences of steroids

Fig 5. Relative expression levels of corticotropin-releasing hormone receptor 2 (CRHR2) analyzed via qPCR.

Values represent the fold change (log10) of each target vs the reference genes. Reference genes: HNRNPD and VATD.

Samples: FWB = female white body, FH = female heart, MWB = male white body, MH = male heart, MT = male testis.

The 95% confidence interval of each group is shown and the significant differences among groups are represented with

different letters.

https://doi.org/10.1371/journal.pone.0216982.g005
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hormones pathways in the nervous system and gonads in O. vulgaris [88,89], the precise gland

or nervous lobe were the octopus’ glucocorticoids are synthesized remain unclear.

In contrast to females, different processes were enriched by the highly expressed transcripts

in males’ WB. Transcripts from the androgen signaling pathway, encoding proteins such as

nuclear receptor activator 4, prohibitin and protein DJ-1, were significantly more abundant in

males. This result together with the higher expression of the estrogen receptor in females, sup-

port the idea that steroid hormones are involved in female and male physiological dimorphism

during reproduction [89].

Fig 6. Relative expression levels of estrogen receptor (ESR1) analyzed via qPCR. Values represent the fold change

(log10) of each target vs the reference genes. Reference genes: HNRNPD and VATD. Samples: FWB = female white

body, FH = female heart, MWB = male white body, MH = male heart, MT = male testis. The 95% confidence interval

of each group is shown and the significant differences among groups are represented with different letters.

https://doi.org/10.1371/journal.pone.0216982.g006
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Regarding the enriched KEGG pathways, apparently the males suffered a mitochondrial

dysfunction, resulting in higher production of reactive oxygen species (ROS), in a similar way

to that observed in the Huntington disease pathway (S16 Fig). Moreover, ROS metabolism was

also enriched in males by the high expression of transcripts encoding peroxiredoxin-1, perox-

iredoxin-4, superoxide dismutase, autophagy protein 5 and NADH dehydrogenase [ubiqui-

none] iron-sulfur protein 3. Notably, this apparent mitochondrial dysfunction leading to high

ROS production and subsequent induction of the antioxidant system, could be an adaptation

for the defense against pathogens. This system was also well represented in the transcriptome

of O. vulgaris hemocytes [19], which in turn are originated in the WB [10]. Authors have sug-

gested that the antioxidant system enzymes may play a role in the defense against pathogens

by the hemocytes [19,90,91]. On the other hand, the apoptotic process was also conspicuous in

the O. vulgaris hemocyte transcriptome, with high expression of initiator and effector proteins

for apoptosis after parasitic infection [19]. This mechanism is also a major defense against

pathogens [92]. In this study, the regulation of apoptosis was an enriched process in males’

Fig 7. Relative expression levels of estradiol 17-beta-dehydrogenase 8 (HSD17B8) analyzed via qPCR. Values

represent the fold change (log10) of each target vs the reference genes. Reference genes: HNRNPD and VATD.

Samples: FWB = female white body, FH = female heart, MWB = male white body, MH = male heart, MT = male testis.

The 95% confidence interval of each group is shown and the significant differences among groups are represented with

different letters.

https://doi.org/10.1371/journal.pone.0216982.g007
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WB by the high expression of transcripts coding for TNF receptor-associated factor 2, apopto-

tic chromatin condensation inducer in the nucleus, Bcl-2 homologous antagonist/killer (apo-

ptosis regulator BAK), geranylgeranyl transferase type-2 subunit beta, RNA-binding protein 5,

ribosomal L1 domain-containing protein 1, and 40S ribosomal protein S3, which were classi-

fied as apoptotic inducers according to the GO. In this regard, the higher expression of antioxi-

dant enzymes and the positive regulation of apoptosis in males’ WB could be linked to a

higher production of hemocytes compared to females.

In the case of unigenes detected exclusively in males, they were classified mainly in micro-

tubule-based process and cilium morphogenesis, despite there is no evidence so far of ciliated

cells within the WB [4,10,11]. However, this organ is tightly connected to nervous tissue, espe-

cially to optic tracts and optic lobes, where microtubule-based processes are essential during

neurogenesis, playing a role in the organization and dynamics of axons and dendrites [93]. In

this regard, the WB may be involved in neurogenesis, possibly due to its high stem cell content,

Fig 8. Relative expression levels of ATP-dependent RNA helicase DDX4 (VASA) analyzed via qPCR. Values

represent the fold change (log10) of each target vs the reference genes. Reference genes: HNRNPD and VATD.

Samples: FWB = female white body, FH = female heart, MWB = male white body, MH = male heart, MT = male testis.

The 95% confidence interval of each group is shown and the significant differences among groups are represented with

different letters.

https://doi.org/10.1371/journal.pone.0216982.g008

Sex-specific transcriptomic profiles in the white body of Octopus maya during reproductive phase

PLOS ONE | https://doi.org/10.1371/journal.pone.0216982 May 16, 2019 19 / 29

https://doi.org/10.1371/journal.pone.0216982.g008
https://doi.org/10.1371/journal.pone.0216982


and its proximity to nervous tissue. Recently, Bertapelle et al. [94] detected neurogenesis in the

CNS of adult O. vulgaris, which is the first report of adult neurogenesis in lophotrochozoan

animals. By contrast, these cilium-related unigenes were not detected in the females’ WB. This

can be due to a reduction in neurogenesis because of a more advanced senescence in females

compared to males.

Finally, in males’ WB there were enrichments for spermatogenesis-related GO terms, how-

ever this could be a coincidence causing an incorrect GO assignment, considering that the

molecular basis of the stem cell system of hematopoiesis and spermatogenesis appears to be

very similar [95,96]. This incorrect GO assignment was confirmed by the qPCR results, where

the expression levels of transcripts involved in spermatogenesis (VASA homolog and PIWIL1)

were compared to those in testis. We observed that despite their presence in the white body,

their expression was significantly higher in testis. However, ZAN and SPAG9, which are

involved in sperm-egg interaction [59,60], were highly expressed in both female and male

white bodies, ZAN showing similar levels to those detected in testis and SPAG9 even higher

Fig 9. Relative expression levels of piwi-like protein 1 (PIWIL1) analyzed via qPCR. Values represent the fold

change (log10) of each target vs the reference genes. Reference genes: HNRNPD and VATD. Samples: FWB = female

white body, FH = female heart, MWB = male white body, MH = male heart, MT = male testis. The 95% confidence

interval of each group is shown and the significant differences among groups are represented with different letters.

https://doi.org/10.1371/journal.pone.0216982.g009
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than testis. These proteins could be synthesized by independent tissues (e.g. WB and gonads)

to enhance fertilization, but further research is needed to test this hypothesis.

Conclusion

The results obtained in this study, are evidences of the involvement of O. maya WB in hemato-

poiesis and in the regulation of immune processes. Notably, there was an important differenti-

ation of signaling pathways between female and male white bodies. Multiple signaling

cascades were upregulated in females, some of them related to bacterial and viral infections. At

the same time, females showed higher expression of unigenes related to neuropeptide signaling

pathways, as well as unigenes involved in the response to glucocorticoids and starvation. By

contrast, in males we detected higher expression of unigenes required in the androgen signal-

ing pathway, antioxidant response, and apoptosis. Considering that glucocorticoids can sup-

press immunity and the antioxidant/apoptotic response can enhance the defense against

Fig 10. Relative expression levels of zonadhesin (ZAN) analyzed via qPCR. Values represent the fold change (log10)

of each target vs the reference genes. Reference genes: HNRNPD and VATD. Samples: FWB = female white body,

FH = female heart, MWB = male white body, MH = male heart, MT = male testis. The 95% confidence interval of each

group is shown and the significant differences among groups are represented with different letters.

https://doi.org/10.1371/journal.pone.0216982.g010
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pathogens; we can infer that immune response was down-regulated in fertilized females and

up-regulated in mature males, which is congruent with the higher gene expression related to

infection pathways detected in females. Furthermore, our data suggest for the first time, an

involvement of this organ in the physiological differences between mature males and females,

showing differential gene expression processes in a sex-specific way during the reproductive

phase.

Fig 11. Relative expression levels of C-Jun-amino-terminal kinase-interacting protein 4 (SPAG9) analyzed via

qPCR. Values represent the fold change (log10) of each target vs the reference genes. Reference genes: HNRNPD and

VATD. Samples: FWB = female white body, FH = female heart, MWB = male white body, MH = male heart,

MT = male testis. The 95% confidence interval of each group is shown and the significant differences among groups

are represented with different letters.

https://doi.org/10.1371/journal.pone.0216982.g011
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Supporting information

S1 Fig. PI3K-AKT signaling pathway. This pathway was enriched in O. maya female WB, the

red star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S2 Fig. Focal adhesion. This pathway was enriched in O. maya female WB, the red star sym-

bols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S3 Fig. Toll-like receptor signaling pathway. This pathway was enriched in O. maya female

WB, the red star symbols indicate the proteins encoded by the upregulated unigenes in

females.

(TIF)

S4 Fig. MAPK signaling pathway. This pathway was enriched in O. maya female WB, the red

star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S5 Fig. RAP1 signaling pathway. This pathway was enriched in O. maya female WB, the red

star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S6 Fig. TNF signaling pathway. This pathway was enriched in O. maya female WB, the red

star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S7 Fig. ERBB signaling pathway. This pathway was enriched in O. maya female WB, the red

star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S8 Fig. RAS signaling pathway. This pathway was enriched in O. maya female WB, the red

star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S9 Fig. Thyroid hormone signaling pathway. This pathway was enriched in O. maya female

WB, the red star symbols indicate the proteins encoded by the upregulated unigenes in

females.

(TIF)

S10 Fig. Oxytocin signaling pathway. This pathway was enriched in O. maya female WB, the

red star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S11 Fig. JAK-STAT signaling pathway. This pathway was enriched in O. maya female WB,

the red star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S12 Fig. VEGF signaling pathway. This pathway was enriched in O. maya female WB, the red

star symbols indicate the proteins encoded by the upregulated unigenes in females.

(TIF)

S13 Fig. Bacterial invasion of epithelial cells. This pathway was enriched in O. maya female

WB, the red star symbols indicate the proteins encoded by the upregulated unigenes in

females.

(TIF)
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S14 Fig. Parkinson disease. This pathway was enriched in O. maya male WB, the red star

symbols indicate the proteins encoded by the upregulated unigenes in males.

(TIF)

S15 Fig. Oxidative phosphorylation. This pathway was enriched in O. maya male WB, the

red star symbols indicate the proteins encoded by the upregulated unigenes in males.

(TIF)

S16 Fig. Huntington disease. This pathway was enriched in O. maya male WB, the red star

symbols indicate the proteins encoded by the upregulated unigenes in males.

(TIF)

S17 Fig. RNA transport. This pathway was enriched in O. maya male WB, the red star sym-

bols indicate the proteins encoded by the upregulated unigenes in males.

(TIF)
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Funding acquisition: Carlos Rosas, Clara E. Galindo-Sánchez.
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