SCHEDA DELL'INSEGNAMENTO DI "FISIOLOGIA E LABORATORIO"

PHYSIOLOGY AND LABORATORY

Laurea Triennale

A.A. 2020/2021

Corso di studio: Biologia

Docente:				e-mail:			
SSD	BIO/09	CFU 10		Anno di corso	III	Semestre	
Insegnamenti <u>Matematica, F</u>	propedeutici suggeri isica e elementi di in	ti: <u>Chimica ge</u> formatica	nerale ed ino	rganica e labora	atorio, Chimica c	organica e labo	ratorio <u>,</u>
Conoscenza	e capacità di comprer	ısione (max 4 ı	righi, Arial 9)				
nozioni appre sapere prese	deve dimostrare di a ese circa i fondamer entare e discutere ir rasversali su tali argo	nti della fisiolo n modo chiaro	ogia cellulare o, semplice	e della comui	nicazione tra le	cellule. Deve	dimostrare di
Conoscenza	e capacità di comprer	sione applicat	te (max 4 righ	ni, Arial 9)			
delle loro alte concretament	leve dimostrare di ess razioni. Il percorso fo te le conoscenze acqu in ambito industriale,	rmativo è orie uisite in attivită	ntato a trasm à di ricerca, s	ettere le capaci ia di base che a	ità operative nec applicata, ed utili	essarie ad app izzare appieno	licare
Eventuali ulter	iori risultati di appren	dimento attesi	, relativamen	te a:			
modo da indica	giudizio ve essere in grado di are anche i principali stemi biologici e di an	approcci meto	dologici pert	inenti a progetta	are esperimenti i		
principali meco esempio in sec	cative ove saper spiegare a p canismi fisiologici res de di esame o durante il linguaggio tecnico-	ponsabili dell' il corso) o ria	omeostasi de	ell'organismo. E	Deve saper prese	entare un elabo	rato (ad
testi e articoli s seguire semina	orendimento: eve essere in grado di scientifici propri del s ari specialistici, confe uggerimenti necessai	ettore della fis renze e maste	iologia, e dev r nello stesso	ve poter acquisi o ambito. Il cors	ire in manieragra so fornisce, inolti	aduale la capad re, allo student	cità di te

PROGRAMMA (in italiano, min 10, max 15 righi, Arial 9, raggruppando i contenuti al massimo in 10 argomenti)

Introduzione alla Fisiologia, concetto di omeostasi e trasporti attraverso la membrana (1,5 CFU): Omeostasi e meccanismi a feedback. Diffusione semplice, trasporti in forma libera e attraverso i canali membranali. Trasporti passivi facilitati. Trasporti attivi primari. Trasporti attivi secondari. Trasporto vescicolare.

Comunicazione metabolica (2 CFU): Principi generali di fisiologia endocrina. Vie di segnalazione degli ormoni: recettori di membrana e recettori intracellulari. Secondi messaggeri e di amplificazione del segnale.

Comunicazione nervosa (1.5 CFU): Equilibri ionici e potenziali bioelettrici, elettrodiffusione degli ioni e potenziale di riposo. Potenziale d'azione. Canali ionici voltaggio dipendenti: aspetti strutturali e funzionali. Innesco e propagazione del potenziale d'azione.

Trasduzione sensoriale (0,5 CFU): meccanismi di trasduzione e codificazione degli stimoli nei recettori sensoriali.

Trasmissione sinaptica (1,5 CFU): Sinapsi elettriche e sinapsi chimiche. Eventi presinaptici: rilascio del neurotrasmettitore. Eventi postsinaptici: sinapsi eccitatorie ed inibitorie, recettori ionotropici e metabotropici. Principali meccanismi di integrazione sinaptica. Fisiologia del muscolo scheletrico, liscio e cardiaco (2 CFU): Giunzione neuromuscolare e potenziale di placca. Accoppiamento eccitazione-contrazione nel muscolo scheletrico. Ruolo del calcio nell'attivazione dell'apparato contrattile. Teoria dello scorrimento dei filamenti. Aspetti meccanici e biochimici della contrazione muscolare nel muscolo scheletrico. Fisiologia del muscolo liscio. Attività funzionale nelle cellule cardiache e accoppiamento elettro-meccanico del miocardio.

Esercitazione di laboratorio (1CFU): Simulazioni al computer, mediante l'utilizzo del software Neurosim, con cui gli studenti potranno sperimentare le risposte fisiologiche della cellula nervosa agli stimoli elettrici.

CONTENTS

Introduction to Physiology, notion of homeostasis and transport across the cell membrane (1,5 CFU). Homeostasis and feedback loops. Simple diffusion, free form transport and mediated by membrane transport channel. Facilitated passive transport. Primary and secondary active transport. Vesicular transport.

Metabolic communication (2 CFU): Main principles of endocrine physiology. Hormonal signaling pathways: membrane and intracellular receptors. Second messengers and signal amplification.

Nervous communication (1,5 CFU): Ionic equilibrium and bioelectrical potentials, ionic electro diffusion and resting potential. Action potential. Voltage dependent ion channels: structural and functional aspects. Encoder and action potential conduction.

Sensory transduction (0,5 CFU): Mechanisms of transduction and codification of stimuli in sensory receptors.

Synaptic transmission (1,5 CFU): Electrical and chemical synapses. Presynaptic events: neurotransmitter release. Postsynaptic events: excitatory and inhibitory synapses, ionotropic and metabotropic receptors. Main mechanisms of synaptic integration.

Physiology of skeletal, smooth and cardiac muscle (2 CFU): Neuromuscular junction and end plate potential. Excitation-contraction coupling in skeletal muscle. Role of calcium in activation of contractile apparatus. Sliding filaments theory of muscle contraction. Mechanical and biochemical aspects of muscular contraction in skeletal muscle. Physiology of smooth muscle. Myocytes function and electromechanical coupling in myocardium.

Laboratory exercises (1 CFU): Computer simulations, by using Neurosim software, to allow students to experience physiological responses to electrical stimuli in nervous cell.

Materiale didattico

LIBRI DI TESTO:

- V. Taglietti e C. Casella: Fisiologia e biofisica delle cellule. Edises
- D. U. Silverthorn: Fisiologia Umana. Pearson
- D. Purves, G. J. Augustine et al. Neuroscienze, Zanichelli
- B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Biologia Molecolare della Cellula, IV edizione, Zanichelli
- C. L. Stanfield, N.J. German Fisiologia. Edises

a) Modalità di esame:

L'esame si articola in prova	Scritta e orale	Solo scritta	
Discussione di elaborato progettuale			
Altro, specificare			
In caso di prova scritta i quesiti sono (*)	A risposta multipla	A risposta libera	

Solo scritta	
A risposta libera	

Solo orale	X
Esercizi numerici	

^(*) E' possibile rispondere a più opzioni