SCHEDA DELL'INSEGNAMENTO DI FISIOLOGIA VEGETALE E LABORATORIO PLANT PHYSIOLOGY AND LABORATORY

Il corso di "Fisiologia vegetale e laboratorio" (comune a tutti i *curricula*) è costituito da 6 CFU di lezioni frontali comprensive di esercitazioni di laboratorio, esercitazioni in aula e ricapitolazioni.

OBIETTIVI FORMATIVI DA ACQUISIRE

Conoscenze:

Conoscenze sui processi biochimici, fisiologici e morfogenetici degli organismi vegetali e della loro regolazione.

Capacità:

Metodologie biochimiche, biomolecolari e biotecnologiche

Competenze metodologiche e di laboratorio sulla coltivazione e analisi degli organismi vegetali.

Comportamenti:

Valutazione, interpretazione di dati sperimentali di laboratorio, sicurezza in laboratorio, valutazione della didattica

PROPEDEUTICITA'

Gli insegnamenti di "Chimica generale ed inorganica e laboratorio", "Chimica organica e laboratorio", "Matematica", "Fisica e laboratorio", "Biologia Vegetale e Laboratorio"

PROGRAMMA

Generalità

- 1. La cellula vegetale: plasmalemma, microcorpi. Vari tipi di plastidi e cloroplasti. Il vacuolo. La parete cellulare: parete primaria; lamella mediana; parete secondaria. I componenti della parete. Accrescimento della parete e sintesi dei suoi componenti.
- 2. Il trasporto transmembrana: diffusione, potenziale chimico, osmosi, potenziali di Donnan, permeazione. Trasporto di un non elettrolita e di un elettrolita. Trasporto attivo e passivo. Antiporto, simporto e cotrasporto. Pompe ATPasiche, canali di membrana, carriers.

Fotosintesi

- 3. Pigmenti fotosintetici e struttura dei fotosistemi. Cattura dell'energia radiante e trasmissione al centro di reazione.
- 4. Flusso fotosintetico di elettroni secondo lo schema a Z. Formazione di gradienti protonici e sintesi di ATP. Fotolisi dell'acqua. Trasporto ciclico e pseudociclico. La fotosintesi batterica.
- 5. La reazione della Rubisco e fissazione del carbonio. Ciclo C3 e sua regolazione. Sistema Ferredossina-Tioredossine.
- 6. Fotorespirazione. Il ruolo della PEP carbossilasi. Significato ecofisiologico ed evolutivo della fotorespirazione.
- 7. Adattamenti del metabolismo fotosintetico. Piante C4. Piante CAM. Evoluzione dei meccanismi fotosintetici.
- 8. La sintesi di amido primario. Mobilizzazione dell'amido e degli zuccheri di riserva. Sintesi dei lipidi e loro mobilizzazione nei semi oleaginosi:

 ossidazione e ciclo del gliossilato.

Metabolismo riduttivo del Carbonio

9. Particolarità delle vie ossidative del carbonio nei vegetali: la glicolisi e la via del pentoso fosfati plastidiali e relazioni con il metabolismo azotato. Significato fisiologico nei vegetali del ciclo di Krebs e peculiarità del mitocondrio vegetale: via delle ossidasi alternative.

Ciclo dell'Azoto e dello Zolfo

- 10. Ciclo dell'azoto: disponibilità di azoto nel terreno. Sistemi di assorbimento per gli ioni azotati. Riduzione assimilativa del nitrato. L'organicazione dell'azoto. Le reazioni di transaminazione
- 11. Il processo di ammonificazione. La nitrificazione. La denitrificazione. Fissazione biologica dell'azoto. Batteri coinvolti nella fissazione. La simbiosi degli azofissatori.
- 12. Il ciclo dello zolfo. Assorbimento dello zolfo. Riduzione del solfato e sintesi della cisteina. Batteri sulfuricanti e desulfuricanti.

Nutrizione Minerale e traslocazione fotosintati

13. Il terreno: struttura e dinamica. Distribuzione dell'acqua e dei nutrienti minerali. Macro e Micronutrienti. Simplasto e apoplasto. Il flusso dell'acqua e dei nutrienti nella radice. Generalità sulla struttura dello xilema. La composizione della linfa grezza. Flusso nello Xilema. La Traspirazione. Regolazione dell'apertura stomatica.

14. Il flusso nel floema: struttura dei tubi cribrosi, composizione della linfa elaborata. Caricamento del saccarosio nel floema. Zone "sink" e zone "source". Ipotesi di Munch. Teoria del flusso elettrosmotico. Uscita del saccarosio dagli elementi cribrosi.

Morfogenesi e sua regolazione

- 15. Le Auxine: struttura, precursori metabolici. Ruolo, funzioni e meccanismi molecolari di azione.
- 16. Le gibberelline: struttura, precursori metabolici, degradazione. Ruolo e funzioni delle gibberelline.
- 17. Le Citochinine: struttura e precursori metabolici. Ruolo e funzioni delle citochinine.
- 18. L'acido abscissico: struttura e precursori metabolici. Ruolo e funzioni dell'acido abscissico. Il ruolo dell'ABA nello stress.
- 19. L'etilene: struttura e precursori metabolici. Ruolo e funzioni dell'etilene.
- 20. Applicazioni agronomiche degli ormoni e dei fitoregolatori sintetici.
- 21. Brassinosteroidi. Acido Jasmonico. Poliammine. Acido salicilico. Coinvolgimento dei fitoregolatori nella risposta ai patogeni.
- 22. Il fotoperiodismo. Piante brevidiurne e longidiurne. Il fitocromo: struttura e funzione. I fitocromi di tipo I e di tipo II. Trasduzione del segnale a breve e lungo termine del fitocromo. Recettori e azioni mediate dal fitocromo.
- 23. I recettori per la luce azzurra: i crittocromi. Interazioni fitocromo/crittocromo.
- 24. Le fototropine. Azioni delle fototropine e possibili meccanismi di trasduzione del segnale.
- 25. Embriogenesi in *A.thaliana*. Diversi stadi embriogenetici. Determinazione dell'asse apicale basale e dell'asse radiale. Determinazione del posizionamento degli organi laterali. Geni coinvolti.
- 26. Germinazione: riserve del seme e loro utilizzo. Fasi di germinazione.
- 27. Fioritura. I meccanismi della fioritura nelle piante. Varie classi di geni coinvolti. Il modello ABC.

MATERIALE DIDATTICO UTILIZZATO E CONSIGLIATO

***** Appunti delle lezioni forniti GRATUITAMENTE sul sito

https://www.docenti.unina.it/SERGIO.ESPOSITO agli studenti iscritti al corso.

******Rascio - Elementi di Fisiologia Vegetale EdiSES Napoli 2017. (38€)

**** Taiz – Zeiger - Elementi di Fisiologia Vegetale Piccin Padova 2016. (28€)

**** Taiz – Zeiger - Fisiologia Vegetale Piccin Padova 2012. (78€)

Altri testi per approfondimento e completamento:

Per le parti 25-27: **** Altamura-Biondi-Colombo-Guzzo - Elementi di Biologia delle Piante Edi SES 2007. (21€)

Sul metabolismo vegetale: *** Smith et al. - Biologia delle Piante Vol 1 -Zanichelli 2011 40€

****Buchanan Gruissem Jones - Biochimica e Biologia Molecolare delle Piante - Zanichelli 2000. (145€)

MODALITA' VERIFICA E VALUTAZIONE DELL'APPRENDIMENTO

Esame orale.

La commissione d'esame, nominata dal CCS accerterà e valuterà collegialmente la preparazione dello studente attribuendo il voto finale sulla base di un adeguato numero di prove e di verifiche. La frequenza assidua e la partecipazione alle attività in aula e laboratorio sono considerati elementi positivi di valutazione.

DOMANDE D'ESAME PIU' FREQUENTI

(in grassetto gli argomenti ineludibili)

Cicli metabolici (con formule dei composti, regolazione e significato fisiologico ed evolutivo)

- 1. La reazione della Rubisco e fissazione del carbonio. Ciclo C3 e sua regolazione
- 2. Fotorespirazione
- 3. Piante C4. Piante CAM
- 4. La sintesi di amido
- 5. La sintesi di saccarosio
- **6.** Il ciclo del gliossilato (con cenni della b-ossidazione)
- 7. Il ciclo GS-GOGAT. Compartimentazione e isoforme. Sintesi di asparagina Domande
- 1. I componenti della parete cellulare e loro sintesi
- 2. Il trasporto transmembrana: trasporto attivo e passivo. Antiporto, simporto e cotrasporto.
- 3. Pompe ATPasiche, canali di membrana, carriers.

- 4. Pigmenti fotosintetici e struttura dei fotosistemi.
- 5. Cattura dell'energia radiante e trasmissione al centro di reazione.
- 6. Flusso fotosintetico di elettroni secondo lo schema a Z.
- 7. Fotolisi dell'acqua.
- 8. Trasporto ciclico e pseudociclico.
- 9. La fotosintesi batterica.
- 10. Regolazione del ciclo C3. Sistema Ferredossina-Tioredossine.
- 11. Il ruolo della PEP carbossilasi.
- 12. Mobilizzazione dell'amido e degli zuccheri di riserva.
- 13. Sintesi dei lipidi e loro mobilizzazione nei semi oleaginosi.
- 14. La glicolisi e la via del pentoso fosfati plastidiali e relazioni con il metabolismo azotato.
- 15. Significato fisiologico nei vegetali del ciclo di Krebs
- 16. Peculiarità del mitocondrio vegetale: via delle ossidasi alternative.
- 17. Disponibilità di azoto nel terreno. Sistemi di assorbimento per gli ioni azotati.
- 18. Riduzione assimilativa del nitrato. Nitrato e nitrito reduttasi
- 19. L'organicazione dell'azoto. Le reazioni di transaminazione
- 20. Ciclo dell'azoto: ammonificazione. nitrificazione. denitrificazione.
- 21. Fissazione biologica dell'azoto. Nitrogenasi. La simbiosi di Rhizobium.
- 22. Il ciclo dello zolfo. Assorbimento dello zolfo. Riduzione del solfato e sintesi della cisteina.
- 23. Il terreno: struttura e dinamica. Distribuzione dell'acqua e dei nutrienti minerali.
- 24. Macro e Micronutrienti.
- 25. Simplasto e apoplasto. Il flusso dell'acqua e dei nutrienti nella radice.
- 26. Flusso nello Xilema.
- 27. La Traspirazione. Regolazione dell'apertura stomatica.
- 28. Il flusso nel floema. Caricamento, trasporto e scaricamento del saccarosio nel floema. Zone "sink" e "source". Ipotesi di Munch. Teoria del flusso elettrosmotico.
- 29. Le Auxine. Ruolo, funzioni e recettori molecolari.
- 30. Le gibberelline: Ruolo, funzioni e recettori molecolari.
- 31. Le Citochinine: Ruolo, funzioni e recettori molecolari.
- 32. L'acido abscissico: Ruolo, funzioni e recettori molecolari. Il ruolo dell'ABA nello stress.
- 33. L'etilene: struttura e precursori metabolici. Ruolo e funzioni dell'etilene.
- 34. **Brassinosteroidi. Acido Jasmonico. Poliammine. Acido salicilico**. Coinvolgimento dei fitoregolatori nella risposta ai patogeni.
- 35. I fitocromi di tipo I e di tipo II. Trasduzione del segnale. Azioni mediate dal fitocromo.
- 36. I crittocromi; azioni dei fitocromi nella fioritura. Interazioni fitocromo/crittocromo.
- 37. Le fototropine. Azioni delle fototropine e meccanismi di trasduzione del segnale.
- 38. Embriogenesi in *A.thaliana*. Stadi embriogenetici. Determinazione degli assi apicale-basale e radiale. Posizionamento degli organi laterali.
- 39. Germinazione: riserve del seme e loro utilizzo. Fasi di germinazione.
- 40. Fioritura. I meccanismi della fioritura nelle piante. Varie classi di geni coinvolti. Il modello ABCDE.

COURSE OF PLANT PHYSIOLOGY AND LABORATORY

The course of "Plant physiology and laboratory" (all curricula) is composed by 6 CFU of lessons, laboratory experience, exercises and summaries.

LEARNING ACHIEVEMENTS

Knowledge and understanding:

Acquisition of theoretical skills on biochemical, physiological and morphogenetic processes in plant organisms and their regulation.

Applying knowledge and understanding:

Biochemical, biomolecular and biotechnological metodologies

Skills in the cultivation and analysis of plant organisms under laboratory conditions

Making judgements: Evaluation and interpretation of experimental laboratory results, lab security, teaching evaluation.

ENTRY REQUIREMENTS

"General and inorganic chemistry and Laboratory"; "Organic chemistry and Laboratory"; "Matemathics";

"Physics and laboratory"; "Plant Biology and Laboratory"

CONTENTS

General

- 1. The plant cell: plasmalemma, microbodies. Plastids; different plastids and chloroplasts. The vacuole. The cell wall: primary CW; middle lamella; secondary CW. CW components. Growth of CW and synthesis of its components.
- 2. Trans-membrane transport: diffusion, chemical potential; osmosis; DOnnan potentials; permeation. Transport of electrolites and non-electrolites. Active and passive transports. ATPase pumps; channels; carriers.

Fotosintesi

- 3. Photosynthetic pigments and photosystems structure. Capturing of the light, and its transmission to the reaction centers.
- 4. Photosynthetic electrons flux and Z-scheme. Proton gradients formation and ATP synthesis. Water photolysis. Cyclic and pseudo-cyclic electron transport. Bacterial photosynthesis.
- 5. RubisCO reaction and carbon fixation. C3 cycle and regulation. Ferredoxin-thioredoxin system.
- 6. Photorespiration. PEP carboxylase. Evolutive and Eco-physiological significance of photorespiration.
- 7. Adaptation of photosynthetic metabolism. C4 plants. CAM metabolism. Evolution of photosynthetic systems.
- 8. Starch synthesis. Starch mobilization and other reserve sugars. Lipid synthesis and their mobilization in oil seeds:

 oxyidation and glyoxylate cycle.

Carbon reduction Metabolism

9. Carbon oxidative pathways in plant cells: glycolysis and oxidative pentose pathway and their relationship with nitrogen metabolism. Physiological significance of Krebs cycle in plant cells and peculiarities of plant mitochondrion: the alternative oxidase pathway.

Nitrogen and Sulfur cycles

- 10. Nitrogen cycle: nitrogen availability in the soil. Nitrogen uptake systems. Assimilatory reduscion of nitrate. Nitrogen organication. Transamination process.
- 11. Ammonification. Nitrification. Denitrification. Biological N2 fixation. Rhizobium fixation.
- 12. Sulfur cycle. Sulfate uptake, reduction and cysteine synthesis. Sulfuricant and desulfuricant bacteria.

Mineral Nutrition and photosynthates translocation

- 13. Structure and dymamics of the soil. Water and nutrients distribution. Macro- and micronutrients. Symplast and Apoplast. Water and nutrients flux in the root. Xylem structure. Xylem sap composition and flux. Transpiration and regulation of stomata opening.
- 14. Phloem flux: sieve elements structure, phloem sap composition. Loadin, transport and unloading of sucrose and other sugars in the phloem "Sink" and "source". Munch hypothesis. Electrosmotic flux hypothesis.

Morphogenesis

- 15. Auxins: structure, receptors, role, actions and molecular mechanisms.
- 16. Gibberellins: structure, receptors, role, actions and molecular mechanisms. Role of GA in flowering.
- 17. Citokinins: structure, receptors, role, actions and molecular mechanisms
- 18. Abscissic acid: structure, receptors, role, actions and molecular mechanisms. ABA in abiotic stress.
- 19. Ethylene: structure, receptors, role, actions and molecular mechanisms.
- 20. Agronomic application of plan hormones and synthetic phytoregulators.

- 21. Brassinosteroids. Jasmonic acid. Poliammines. Salicylic acid. Roles of phytoregulators in biotic stress.
- 22. Photoperiodism. Phytochrome: structure and functions. Phytochromes I and II. Signal transduction. Receptors and phytochrome actions.
- 23. The blue light receptors: chryptochromes. Phytochrome/cryptochrome interactions
- 24. Phototropins. Actions and signal transduction.
- 25. Embryogenesis in *A.thaliana*. Different embryiogenetic states. Determination of apical-basal and radial symmetry. Determination of the position of the lateral organs.
- 26. Germination: seed reserves and their utilization. Phases of germination.
- 27. Flowering in plants. ABCDE model.

TEXTBOOKS

***** Lessons in pdf format – free for frequenting students on the website https://www.docenti.unina.it/SERGIO.ESPOSITO .

******Rascio - Elementi di Fisiologia Vegetale EdiSES Napoli 2017. (38€)

**** Taiz – Zeiger - Elementi di Fisiologia Vegetale Piccin Padova 2016. (28€)

**** Taiz – Zeiger - Fisiologia Vegetale Piccin Padova 2012. (78€)

Other textbooks for completing preparation/consulting:

Parts 25-27: **** Altamura-Biondi-Colombo-Guzzo - Elementi di Biologia delle Piante Edi SES 2007. (21€)

Plant Metabolism: *** Smith et al. - Biologia delle Piante Vol 1 -Zanichelli 2011 40€

*****Buchanan Gruissem Jones - Biochimica e Biologia Molecolare delle Piante - Zanichelli 2000. (145€)

ASSESSMENT

Oral exam.

The commission will evaluate student's skills, and the score will be given also taking into account the attendance to the course.

FREQUENTLY ASKED QUESTIONS DURING EXAM

(in bold basal notion)

Metabolis cycles (molecular formulae, regulation and evolutionary and physiological significance)

- 1. RubisCO reaction and carbon fixation. C3 Cycle and its regulation
- 2. Photorespiration
- 3. C4 metabolism. CAM plants
- 4. Starch synthesis
- 5. Sucrose synthesis
- **6. Glyoxylate cycle** (generals on b-oxyldation)
- 7. GS-GOGAT, compartmentation and isoforms. Asparagine synthesis

Questions

- 1. Cell wall components and their synthesis
- 2. Trans membrane transport. Active and passive transport. Antiport, Symport, cotransport.
- 3. Pompe ATPasiche, canali di membrana, carriers.
- 4. Photosynthetic pigments and photosystems structure.
- 5. Light harvesting and its transmission to the reaction centers.
- 6. Photosynthetic electron flux in the Z scheme.
- 7. Water photolysis and O2 evolution.
- 8. Cyclic and pseudo cyclic electron transport.
- 9. Bacterial photosynthesis.
- 10. C3 cycle Regulation. Ferredoxin-thioredoxin system.
- 11. PEP carboxylase.
- 12. Starch and sugars mobilization.
- 13. Lipid synthesis, and their mobilization in oil seeds.
- 14. Plastidial glycolysis and oxidative pentose phosphate pathway, and their relationship with nitrogen metabolism.
- 15. Role of Krebs cycle in plant cells.
- 16. Peculiarities of plant mitochondria: alternative oxidase pathway.

- 17. Nitrogen availability in the soil. Nitrogen uptake systems.
- 18. Nitrate assimilatory reduction. Nitrate e nitrite reductase
- 19. Nitrogen organication. Transamination.
- 20. N cycle: ammonification; nitrification; denitrification.
- 21. Biological N2 fixation. Nitrogenase. Rhizobium symbiosis.
- 22. S cycle. Sulfur assimilation. Sulfate reduction and cysteine synthesis
- 23. The soil: structure and dynamics. Water and nutrient distribution.
- 24. Macro and Micronutrients.
- 25. Simplast and apoplast. Water and nutrient flux in the root.
- 26. Xilem flux.
- 27. Transpiration. Regulation of stomata opening.
- 28. Phloem flux. Loading, transport and unloading of sucrose in the phloem. "sink" e "source". Munch hypothesis. Electrosmotic flux theory.
- 28. Auxins: structure, receptors, role, actions and molecular mechanisms.
- 29. Gibberellins: structure, receptors, role, actions and molecular mechanisms. Role of GA in flowering.
- 30. Citokinins: structure, receptors, role, actions and molecular mechanisms
- 31. Abscissic acid: structure, receptors, role, actions and molecular mechanisms. ABA in abiotic stress.
- 32. Ethylene: structure, receptors, role, actions and molecular mechanisms.
- 33. Agronomic application of plan hormones and synthetic phytoregulators.
- 34. Brassinosteroids. Jasmonic acid. Poliammines. Salicylic acid. Roles of phytoregulators in biotic stress.
- 35. Phytochromes I and II. Signal transduction. Receptors and phytochrome actions.
- 36. The blue light receptors: chryptochromes. Phytochrome/cryptochrome interactions
- 37. Phototropins. Actions and signal transduction.
- 38. Embryogenesis in *A.thaliana*. Different embryiogenetic states. Determination of apical-basal and radial symmetry. Determination of the position of the lateral organs.
- 39. Germination: seed reserves and their utilization. Phases of germination.
- 40. Flowering in plants. ABCDE model.